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ABSTRACT

As part of an RCS-flow field interaction study, tests were performed
in the Langley Nozzle Test Chamber on a series of nozzles to determine the
qualitative effects of varying nozzle exit geometry and exit-to-ambient
pressure ratio on the plume shape. The nozzles, which had circular throats
and circular, elliptical, and oval exit cross sections, had design Mach
numbers ranging from 3.14 to 3.87. They were supplied with dry unheated
air at pressures up to 200 psi and exhausted into quiescent air. The plume
shapes were photographically recorded from schlieren images and were
compared to predicted axisymmetric plume shapes. These tests demonstrated
that, at exit-to-ambient pressure ratios of 30 and above, plumes equivalent
in size and shape to the circular nozzle plumes could be generated by the
non-circular nozzles with lower chamber pressures and mass flow rates; but
at exit pressure ratios less than 30 the non-circular nozzles generated
much smaller plumes than the circular nozzle at comparable exit pressure

ratios.



SUMMAkY

Tests were conducted in quiescent air on a series of nozzles having
circular throats and circular, elliptical, and oval exit cross sections to
determine the qualitative effects of the exit shape on the plume shape at
several exit-to-ambient pressure ratios. The circular nozzle and two of
the non-circular nozzles had the same circular throat diameters, while the
third non-circular nozzle throat area was one-half the others. The exit
areas of the non-circular nozzles were approximately one-half the exit area
of the circular nozzle. The plume shapes were recorded on schlieren
photographs and were compared to each other and to predicted axisymmetric
shapes on the basis of similar exit-to-ambient pressure ratios. At the
lower exit pressure ratios, the non-circular nozzle plumes were smaller
than the circular nozzle plumes, but at exit pressure ratios of 30 and
above, the non-circular nozzles gene;ated plumes of compa;gblg shape and
size, and these plumes were also generated with lower mass flow rates than

were the circular nozzle plumes.

INTRODUCTION

Simulating the exhaust of a rocket motor in conventional supersonic

and hypersonic wind tunnels is challenging, primarily because of the
requirement for simultaneous scaling of the model rocket parameters to

tunnel free-stream conditions, even when the model rocket is an exact

scaled duplicate with reacting exhaust flows. Because of these diffi-
culties, many studies involving rocket exhaust effects have been conducted
with non-reacting, unheated gases such as dry ailr or nitrogen (Reference

1). In cases where the rocket motors encounter a wide range of flight
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conditions, it is desirable to match the ratios of the rocket model mass-
flow, momentum, and exit pressure to free-stream conditions with those of
the actual flight conditions. The aforementioned challenges in accomplish-
ing this become apparent, when for a given scaled model nozzle geometry,
calculations of the chamber pressures required to meet the desired condi-
tions for one parameter result in mismatched values for the other two
parameters. The largest mismatch is between the two flow parameters (mass
flow and momentum) and the exit pressure ratio. For example, calculations
of the model nozzle chamber pressures required to match the flight exit-
to-ambient pressure ratios (governing the exit plume shape) result in model
momentum and mass-flow ratios that in most cases greatly exceed the corre-
sponding flight values. One way to partially circumvent this is to reduce
the model nozzle exit area (and consequently reduce the exit Mach number),
and therefore, increase the exit-to-ambient pressure ratios with
correspondingly larger exhaust plumes, without increasing the mass flow;
however, it is necessary to maintain the nozzle exit plane dimension
perpendicular to the local free stream flow to scale. This can be done by
reducing the nozzle exit dimension parallel to the free stream flow to
effectively reduce the exit area, thereby creating a non-circular exit.

As the initial phase of an effort to design a set of nozzles for
wind-wind-tunnel tests of a spacecraft reaction control system (RCS), a
qualitative study was conducted to determine the effect of varying the
nozzle shape at the exit plane and the nozzle exit-to-ambient pressure
ratio on the shape of the plume in quiescent air. Since in actual flight
the nozzles were to exhaust transversely into a moving stream, it was

believed that exit plume shape was an important factor in reproducing the
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interactions between the rocket exhaust and the flow field. The tests
reported herein were conducted in the Langley Nozzle Test Chamber in
quiescent air on four nozzles having circular throats and circular,
elliptical, and oval exit cross sections. The plume shapes were
photographically recorded from schlieren observations and compared to

predictions calculated by the method of reference 2.

SYMBOLS
Aj Exit area, in?
Ac Throat area, in2
P. Chamber pressure, 1b/in2
Pj Exit pressure, lb/in2
my mass-flow rate of nozzle A, slug/sec
mg mass-flow rate of nozzle B, slug/sec
ﬁc mass-flow rate of nozzle C, slug/sec
iy mass-flow rate of nozzle D, slug/sec
Pma Measured pressure at orifice located on the exit major axis, 1b/in2
Pmi Measured pressure at orifice located on the exit minor axis, lb/in2

Pwo Ambient test chamber pressure, lb/in2
6 Angular orientation of nozzle exit major axis to viewing axis of

schlieren system, deg.

APPARATUS AND TESTS
Four nozzles were designed and fabricated for the tests. Sketches
of these nozzles illustrating theilr nominal design dimensions are shown in
figure 1 and a photograph of three of the nozzles is presented in figure 2.

(4)
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All of the nozzles were fabricated from 17-4 stainless steel, and each
nozzle had a rounded entrance to a straight-sided circular throat section
with an abrupt transition to a conical expansion to the exit plane. The
circular throats were selected primarily to facilitate the measurement of
their fidelity, thereby insuring that the various nozzle throat dimensions
were known. Table 1 lists their characteristics and actual pertinent
dimensions as measured subsequent to fabrication. Nozzle A, the baseline
nozzle, is an axisymmetric (circular cross-section) nozzle and was used as
the basis for comparing the other nozzles. Nozzles B and C were designed
with the same throat diameter as nozzle A, but the exit cross sections were
an ellipse and a straight-sided oval, respectively, with their major axes
equal to the diameter of nozzle A. The resulting exit areas were
approximately one-half that of nozzle A, with correspondingly lower
expansion ratios and higher exit-to-ambient pressure ratios for a given
chamber pressure. Conversely, nozzles B and C would require less than half
the chamber pressure and mass flows as nozzle A to produce the same
exit-to-ambient pressure ratio. As shown in figure 1, nozzle D has
approximately the same exit ellipse as nozzle B, but the throat area was
approximately one half that of the other nozzle; thus, the expansion ratio
was about equal to that for nozzle A. For a given chamber pressure, nozzle
D would be expected to produce the same exit-to-ambient pressure ratio for
about half the mass flow as nozzle A. Since the nozzles had circular
throat cross sections it is recognized that the transition in cross section
at the throat from circular to elliptical or oval would produce uneven
expansion of the flow in the nozzle and therefore affect the exit flow
characteristics of the asymmetric nozzles B, C, and D.
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Each nozzle had 2 pressure orifices near the exit consisting of 0.040
in. o.d., 0.020 in. i.d. stainless steel tubing silver-soldered flush with
the nozzle wall and exit-plane surface and hand worked to a smooth surface
at the orifice. As the centers of the orifices were located 0.020 in.
upstream of the exit plane the pressures at these locations would be some-
what higher than the actual exit pressures as the flow was still expanding.
Exit pressures were calculated for these locations for each nozzle for
comparison with the actual measurements.

The tests were conducted in the Langley Nozzle Test Chamber. A
photograph of the test chamber is shown in figure 3, and a detailed
description is given in reference 3. The Nozzle Test Chamber is a sealed
chamber connected to a vacuum system capable of evacuating the chamber to
pressures as low as one millimeter of mercury. The system contains several
large vacuum storage spheres (40 ft., 60 ft., and 100 ft. in. diameter)
that in conjunction with the pumps can maintain an essentially quiescent
environment at low pressure (which varied slowly with time) while the
nozzles are operating. A schematic diagram of the nozzle test chamber and
gas supply system is shown in figure 4(a). Dry, unheated high pressure air
is suppiied fo the nozzle test fixture. An adaptor plate (figure 4(b))
designed to hold the nozzles was bolted directly to this test fixture. The
test chamber is equipped with opposing windows and a double-pass, parallel
light schlieren system having a continuous light source. A movable mirror
can be positioned for viewing the image on a video monitor or for single-
frame exposure on a film plate.

Each nozzle was tested for a range of plenum pressures, from 32 to

190 psia at ambient pressures ranging from 0.021 to 0.113 psia. The plenum
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pressure was limited to 200 psi or less because of structural limitations
in the nozzle test fixture. At each test point simultaneous measurements
of plenum pressure and temperature, ambient chamber pressure and
temperature, nozzle exit pressure, and schlieren photographs of the plumes
were recorded. Each non-circular nozzle was tested with the major axis in
the exit plane transverse to the line of sight across the test chamber and
again with the nozzle rotated 90° about its longitudinal axis. In this way
two orthogonal views of the plume profiles were obtained for, in most
cases, the same exit-to-ambient pressure ratio, Pj/Pm. The exit-to-ambient
pressure ratios were determined by dividing the calculated nozzle exit
pressure by the measured test chamber static pressure. The nozzle exit
pressure was determined from reference 4, assuming an isentropic, inviscid
expansion from the measured plenum chamber pressure and temperature and the
corresponding nozzle physical characteristics given in table I. The ori-
fice pressures near the nozzle exits were calculated in the same manner.
The uncertainties in the pressure measurements are unknown, but the differ-
ences in the measurements when the test chamber was pumped down prior to a
test were obtained. The difference between the measured orifice pressures
and the ambient pressure at zero chamber pressure ranged from plus 0.004 to
.016 psi, depending upon the gage. One gage consistently indicated 0.012
psi higher than the other and both gages consistently indicated higher
pressures than the ambient pressure measurement. This consistent positive
difference could be caused by leaks in the nozzle pressure system (the
nozzles were changed frequently without leak checks) or lag in the small
pressure tubes, or both. Assuming that the deviation of 0.016 psi men-

tioned above remained during the tests, the errors in the measured
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pressures near the nozzle exits would range from 1.2 to 4 percent at the
highest and lowest chamber pressure respectively, exclusive of the
uncertainties., Additional errors in the pressure measurements during tests
with flow through the nozzles could occur because of the relatively small
dimensions of these nozzles. Small fabrication errors could result in
large errors in the measured pressures compared to the predicted values.
The nozzle throat and exit dimensions were determined with an uncertainty
of 0.0005 in., but imperfections in the nozzle expansion regions could not

be determined.

PRESENTATION OF DATA

The basic data consisting of schlieren photographs of the exit plane
of various exit-to-ambient pressure ratios are presented in figures 5 to 8.
For the asymmetric nozzles (figures 6 to 8), the photographs for exit pres-
sure ratios that were nearly matched were placed together to facilitate
direct comparison of the effect of nozzle orientation (major axis parallel
or perpendicular to the line of sight). Also presented in figures 6 to 8
are the nozzle A plume shapes at eqﬁivalent exit pressure ratios for
comparison. Figures 5, 6(c), and 8(c) also presented outlines of the plume
shapes calculated for the same conditions by the method of reference 2.
This code solves the Euler equations for the computation of inviscid 2-D
and axisymmetric underexpanded plumes. Since the calculations were limited
to axisymmetric plume shapes, the asymmetric plume data (figures 6(c) and

8(c)) are compared with calculated axisymmetric plumes having the same
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exit-to-ambient pressure ratios. The plume shapes of nozzles B, C, and D
at exit pressure ratios of 13 to 14 are compared in figure 9 with the exit
plume shape of nozzle A at an exit pressure ratio of 6.297.

The variation of measured near-exit pressures, P, . and Pp;, with
chamber pressure for nozzles A and B are presented in figure 10, and for
nozzles C and D in figure 11. The calculated values of these pressures
using a one-dimensional isentropic expansion for the same exit-to-throat
area ratios are also presented for comparison. As shown in figure 10, the
measured pressures for the two orifices on nozzle A do not agree; one value
is about 30 percent higher than the other measurement and the calculated
value. A later test conducted after the conical nozzle interior was
reworked and polished, hence resulting in minor changes to the contour,
showed better agreement between the two measurements although both
measurements were markedly different than the original ones. This
""indicates that the nozzle characteristics are very sensitive to
manufacturing imperfections. The measured pressures of nozzle A and nozzle
D are compared (they have nearly the same expansion ratio) with the
calculated values in figure 12. The pressures measured on the major axis
of nozzle D and one set measured for nozzle A agree closely with the

calculated values.

RESULTS AND DISCUSSION
As stated previously, the primary objective of the tests was to
compare the circular nozzle plume shapes to the non-circular nozzle plume
shapes at the same exit pressure ratios. From these comparisons, the

effectiveness of reducing the nozzle exit area by reducing the nozzle exit
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dimension in one direction only can be evaluated. Because of the upper
limit on plenum pressure, the maximum exit-to-ambient pressure ratio
obtainable for nozzle A was somewhat lower than those obtained with nozzles
B and C. The plume shapes for nozzles B and C for exit pressure ratios
higher than the maximum obtained with nozzle A were therefore compared

to the calculated plume shapes. Figure 5 shows that the calculated plume
shapes for nozzle A closely resemble the actual shapes taken from the
schlieren photographs. This provides assurance that the calculated plumes
would provide a measure for assessing the plumes of the asymmetric nozzles
for cases where there are no corresponding data for the axisymmetric nozzle
A.

In general, at the lower exit-to-ambient pressure ratios, the
asymmetric nozzles B, C, and D produced smaller plume widths in the major
and minor axes than the plumes of nozzle A at comparable exit pressure
ratios [figures 6(a), 7(a), 7(b), 8(a), and 8(b)]. In this range of exit
pressure ratios (6.0 to 14.0 for nozzles B, C, and D) the pressure ratio
was not a reliable indicator of the plume width for the asymmetric nozzles.
In all of these cases, the exit pressure ratios, and correspondingly the
chamber pressures and mass flows, would have to be increased to match the
corresponding plume of nozzle A. For example, it can be noted that the
plumes produced by nozzles B, C, and D at exit pressure ratios of 13 to l4
more closely match the exit plume shape of nozzle A at an exit pressure
ratio of 6.297 (see figure 9). The calculated ratios of the mass flows of
nozzles B, C, and D at exit pressure ratios of approximately 12 to 14 to
the mass flow of nozzle A at an exit pressure ratio of 6.297 are also shown

in figure 9.
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The plume shapes produced by nozzles B, C, and D, at exit pressure
ratios of approximately 30 or greater compared favorably with those of
nozzle A [figures 6(b), 7(c), and 8(d)] or the calculated shapes [figures
6(c), 7(d), and 8(c)] at the same exit pressure ratios. In all of these
cases, the width of the plumes emanating in the plane of the nozzle minor
axes (8=0°2) of the non-circular nozzles was larger than those in the plane
of the major axes (8=90°). This might be expected because of the uneven
expansion within the nozzle resulting from the transition from the circular
throat to the final oval or elliptical cross-sectional shape at the nozzle
exit plane. This is borne out by the measured pressures near the exits for
nozzles B, C, and D (figures 10, 11, and 12 respectively) being higher on
the minor axes than those measured on the major axes. Although the flow
within the nozzles was probably highly 3-dimensional, the measured
pressures indicate that the flow inside the nozzles expanded less in the
plane of the minor axis. The dashed lines in these figures represent the
calculated pressures at the orifice location for circular nozzles having
the same expansion ratios as the test nozzles.

Referring back to figures 6(b) and 6(c) it can be seen that for exit
pressures nearly the same [figure 6(b)], the plume widths of nozzle B (exit
pressure ratios of 60-61) are only slightly smaller than that for nozzle A
at an exit pressure ratio of 59.14. The nozzle B plumes, when increased to
exit pressure ratios of 68-71 compare more closely with the nozzle A plume
at the lower exit pressure ratio [figure 6(c)]. The calculated mass flows

of nozzle B at exit pressure ratios of 60-61, and 68-71 [figures 6(b) and

(11)



6(c)], when adjusted to the ambient conditions of nozzle A, range from
about 36 percent to 42 percent respectively, of that of nozzle A at an exit
pressure of 59.14,

The calculated mass flows for nozzle C for the cases where the plumes
at the higher exit pressure ratios compared favorably with that of nozzle A
(figure 7(c)) averaged about 43 percent of that of nozzle A at the same
exit pressure ratio. The same trend is noted for nozzle D; where the exit
pressure ratios are nearly the same as that for nozzle A (figure 8(d)), the
calculated mass flows are about 55 percent of that of nozzle A. The
preceding discussion has shown that at low exit-to-ambient pressure ratios
(approximately 15 or less), the nén-circular nozzles B, C, and D produced
smaller plumes than those produced by the circular nozzle A for the same
exit conditions. Higher exit pressure ratios and, consequently, higher
mass flows would be required to establish plume shapes comparable to that
produced by a circular nozzle. This would tend to negate any advantage in
designing model test nozzles with reduced exit areas and non-circular exit
shapes. On the other hand, the reverse was true at exit-to-ambient
pressure ratios of 30 and above. At comparable exit pressure ratios, the
plume shapes of the non-circular nozzles compared favorably with those -
produced by the circular nozzle and the mass flows were reduced to values
near those predicted fo;'the same exit-to-ambient pressure ratios. The
nozzles having the lower éxpansion ratios (nozzles B and C) required lower
mass flows than the nozzle with the same expansion ratio (nozzle D) as the

circular nozzle A.
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CONCLUDING REMARKS

Tests were conducted on a series of model nozzles in the Langley
Nozzle Test Chamber to determine the qualitative effects of nozzle
expansion ratio and exit cross-sectional shape on the exit plume shape and
mass flows. The results of the tests conducted on a series of model
nozzles having circular throats with circular, elliptic, and oval exit
cross sections exhausting dry, unheated air into quiescent air indicated
that, at exit-to-ambient pressure ratios of 30 and above, exit plumes
equivalent in size and shape to circular nozzle plumes could be generated
by the non-circular nozzles with lower chamber pressures and mass flow
rates. This was not true for cases at exit pressure ratios below 15. The
exit pressure ratios of the non-circular nozzles in these cases would have
to be considerably larger than that of the circular nozzle in order to
generate comparable exit plumes. At these lower exit pressure ratios, the
resulting mass flows for the non-circular nozzles having lower expansion
ratios were only slightly less than that of the circular nozzle and
somewhat higher than the circular nozzle for the non-circular nozzle having

the same expansion ratio.
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TABLE I. - NOZZLE CHARACTERISTICS

Nozzle A - Circular Exit

Throat diameter, in. 0.0815
Exit diameter, in. 0.252
Throat area, A¢, sq. in. 0.0052168
Exit area, A;, sq. in. 0.049876
Area ratio, exit-to-throat, Aj/At 9,561
Exit Mach number ' ' 3.872
Pressure ratio, P,/P 0.00782
j’te
Nozzle B - Elliptical Exit
Throat diameter, in. 0.081
Exit major axis, in. 0.250
Exit minor axis, in. 0.1275
Throat area, A¢, sq. in. 0.0051529
Exit area, A;, sq. in. 0.025034
Area ratio, exit to throat, Aj/At 4.85824
Exit Mach number 3.145
Pressure ratio, Ps;/P, 0.02193
mp/m, at equal exit pressure% 0.3521
Nozzle C - Oval Exit
Throat diameter, in. 0.081
Exit major axis, in. 0.2526
Exit minor axis, in. 0.1173
Throat area, A¢, sq. in. 0.0051529
Exit area, A;, sq. in. 0.026677
Area ratio, exit to throat, Aj/At 5.17712
Exit Mach number 3.21
Pressure ratio, P;/P. 0.02039
mc/my at equal exit pressure¥ 0.3881
Nozzle D - Ellptical Exit
Throat diameter, in. 0.060
Exit major axis, in. 0.250
Exit minor axis, in. 0.1377
Throat Area, A, sq. in. 0.002827
Exit area, A:, sq. in. 0.027037
Area ratio, exit to throat, Aj/At 9.565973
Exit Mach number 3.873
Pressure ratio, P: /P, 0.00782
mp/m, at equal exit pressure* 0.5424

Note: Linear dimensions are measured values.

*At equal exit pressures, ﬁl/ﬁz = (Pe1/Pe2) (Ap1/Ac2)
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(¢) P/R, = 29.534; Pc = 190.8, P, = 0.054.

Figure 5.- Comparison of plume shapes as obtalned from schlieren photographs
and as calculated for nozzle A. '
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(a) Exit pressure ratios of 6.53 to 6.60.
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(b) Exit pressure ratios of 13.47 to 13.96.

F'QUre 7.- Schileren photographs of the plume shapes produced by nozzle C
compared with plume shapes of nozzle A. ORFMHAL PhgE 1o
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(b) Exit pressure ratlos of 12.54 to 12.93.

|

F'QUI'G 8.- Schlieren photographs of the plume shapes produced by nozzle D

compared with plume shapes of nozzle A.
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Nozzle A, P|/R, = 6.927
— —— — Nozzles B, C, &D, @ = 90°
— - —— Nozzles B, C &D, 8 =0°

%ﬁ_\

a—_——/

(a) Nozzle B, PJ/R, = 13.12 - 13.94, ';‘a'";‘A' 0.75 .

M
==
\\
===

(c) Nozzle D, PJ/P, = 12.54 - 12.93, Mg/ = 1.08.

Figure 9.— Comparison of the plumes from nozzles B, C, and D at exit pressure
ratios ranging from 12.54 to 13.96 with the plume from nozzie A at an
exit pressure ratio of 6.927.
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